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The supplementary document provides 1) more statistics on our benchmark; 2) im-
plementation details of primitive detection networks; 3) the complete mathematical
specification of our Integer Programming (IP) formulation; and 4) additional experi-
mental results.

1 Benchmark statistics

Figure 1 shows histograms of training and testing samples against different numbers of
corners, edges, and regions.

2 Implementation details of primitive detectors

Standard neural architectures are used for the primitive detection: Fully Convolutional
Network (FCN) for corners [2], Dilated Residual Networks (DRN) [4] for edges, and
Mask-RCNN [1] for regions.
Corner detection: In our corner detection pipeline, we borrow an existing architec-
ture [2]. Our Fully Convolutional Network (FCN) divides the image in a Hb×Wb grid,
where each cell is responsible for predicting a confidence score c

conf
and (x, y) coor-

dinates of a corner residing within a bin. The corner network proposal head is trained
using binary cross-entropy loss at each output cell in the grid. Similarly to [2], we utilize
a Google’s Inception-v2 model [3] for encoding the input image. We train the network
with a learning rate of 0.001 (decay ratio γ = 0.1 every each 5 epochs) using ADAM
optimizer for 16 epochs and utilize only corners with c

conf
≥ 0.2, batch size is set to 1.

Our output grid size is 120 × 120 of 256-dimensional features which are regressed to
the output of the network.
Edge detection: We utilize the DRN-D-105 architecture [4]. Given an input RGB image
I (256× 256), we obtain for each building an edge segmentation mask by optimizing a
binary cross-entropy loss for each cell in the final feature map at the end of the network.
We fine-tune the pre-trained DRN-D-105 architecture with learning rate equal to 0.0001
for 40 epochs and batch size set to 8.
Region detection: We utilize the official code release for Mask-RCNN [1] for per-
forming instance region segmentation. We train the network utilizing regions from the
annotations as objects belonging to the same class. Our model was initialized with R-
50-FPN architecture and trained with learning rate equal to 0.002 with decay of 0.0001.
At test phase for a target building, we extract up to N (=100) regions.
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Fig. 1. Building counts against the numbers of corners, edges, and regions.

3 Integer Programming (IP) formulation

Objective function: Indicator variables are defined for each primitive: Icor for a corner
c ∈ C; Iedg for an edge e ∈ E ; and Ireg for a region r ∈ R. We also have an indicator
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variable Idir for a corner to an incident edge direction relationship.

max
{Icor,Iedg,Ireg,Idir}

∑
e∈E

(e
conf

c′
conf

c′′
conf
− 0.53)Iedg(e)︸ ︷︷ ︸

corner and edge primitives

+0.1
∑
c∈C

∑
θ∈Dc

(θ
conf

c
conf
− 0.52)Idir(θ, c)︸ ︷︷ ︸

corner-to-edge relationship

+
∑
r∈R

Ireg(r)︸ ︷︷ ︸
region primitive

.

(1)

cconf and econf denotes the confidence scores for the corner and the edge detections,
respectively. θconf denotes the corner-to-edge relationship confidence. Note that region
and region-to-region relationship confidences were used for thresholding the detections
and will not be in the optimization. With abuse of notation, c′ and c′′ denotes the end-
points of an edge e.
Slack Variables: In the following sections we describe constraints as hard constraints
however, we utilize slack variables to soften them. For instance, given a constraint in
the form of IAIB = C, we can split it into two additional constraints IAIB ≤ C + Sup
and IAIB ≥ C − Slo and add −Sup and −Slo in the objective function, in order to
approximate a lower and upper bound to a constant C. We perform similar procedure
for constraints in the form of IAIB ≥ C and IAIB ≤ C.
Topology constraints: We enforce three topology priors as constraints: (1) active edge
must have its end-points active (Eq. 2), (2) degree of each corner should be greater or
equal to two (Eq. 3) and (3) two intersecting edges ek and el can not be active at the
same time (Eq. 4). ∑

e∈Ec

Iedg(e) ≥ 2Icor(c), (2)

Icor(c
′) + Icor(c

′′) = Iedg(e), (3)
Iedg(ek)Iedg(el) = 0, (4)

where Ec represents the set of all candidate edges incident to c.
Region primitive constraints: Region primitives are added as constraints by (1) en-
forcing indicator variables of intersecting edges and regions to not be active at the same
time (Eq. 5) and (2) enforcing the activation of edge indicator variables surrounding a
region (Eq. 6). For the latter, we trace a boundary of the predicted region and cast rays
γ (i.e. line segments with length and width equal to 100 and 2 pixels, respectively) in
the outward direction (i.e. normal to the traced boundary) for every 2 pixels. We collect
edges that intersect a γ and enforce that at least one edge should be active.

∑
e∈Er

Iedg(e)Ireg(r) = 0, (5)∑
e∈Eγ

Iedg(e) ≥ Ireg(r), (6)



4 N. Nauata et al.

where Er and Eγ are the set of edges that intersect a region r and a ray γ, respectively.
Region-to-region relationship constraints: Considering a pair of regions sharing a
common boundary predicted as a segmentation mask. We fit a line segment to the
boundary segment, consider an orthogonal line segment β (16 pixels in length) at the
center. We collect all the edge primitives that intersect with the last line segment. One
of them must be the boundary edge.∑

e∈Eβ
Iedg(e) = 1, (7)

(8)

where Eβ represents the set of all candidate edges intersecting β.
Corner-to-edge relationship constraints: We design constraints to enforce incident
edge indicator variables to be active consistently with its corresponding corner and
directional bin. In addition, if a corner-to-edge confidence is below 0.2 for a corner and
an incident direction, we do not allow any edges in that direction bin to be on. In order
to achieve this the following two constraints are sufficient.∑

e∈Eθ
Iedg(e) = Idir(θ, c), (9)

∑
e∈E′

Iedg(e) = 0, (10)

(11)

where Eθ is a set of collected edges in a direction θ within 5 degrees in angular distance
and E ′ is a set of edges incident in all directions with confidence lower than 0.2.

4 Additional experimental results

Figure 2 presents intermediate results for detected primitives and relationships from our
method. Figures 3-35 present additional experimental results against the five competing
methods over all the testing samples.
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Fig. 2. Intermediate results displaying detected primitives and relationships in our pipeline.
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Fig. 3. Additional qualitative results.
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Fig. 4. Additional qualitative results.
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Fig. 5. Additional qualitative results.
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Fig. 6. Additional qualitative results.
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Fig. 7. Additional qualitative results.
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Fig. 8. Additional qualitative results.
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Fig. 9. Additional qualitative results.
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Fig. 10. Additional qualitative results.
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Fig. 11. Additional qualitative results.
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Fig. 12. Additional qualitative results.
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Fig. 13. Additional qualitative results.
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Fig. 14. Additional qualitative results.
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Fig. 15. Additional qualitative results.
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Fig. 16. Additional qualitative results.



20 N. Nauata et al.

Fig. 17. Additional qualitative results.
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Fig. 18. Additional qualitative results.
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Fig. 19. Additional qualitative results.
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Fig. 20. Additional qualitative results.
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Fig. 21. Additional qualitative results.



Title Suppressed Due to Excessive Length 25

Fig. 22. Additional qualitative results.
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Fig. 23. Additional qualitative results.
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Fig. 24. Additional qualitative results.
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Fig. 25. Additional qualitative results.
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Fig. 26. Additional qualitative results.
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Fig. 27. Additional qualitative results.
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Fig. 28. Additional qualitative results.
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Fig. 29. Additional qualitative results.
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Fig. 30. Additional qualitative results.
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Fig. 31. Additional qualitative results.



Title Suppressed Due to Excessive Length 35

Fig. 32. Additional qualitative results.
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Fig. 33. Additional qualitative results.
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Fig. 34. Additional qualitative results.
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Fig. 35. Additional qualitative results.


